login
A152810
Let the binary expansion of n be n = Sum_{k} 2^{r_k}, let e(n) be the number of r_k's that are even, o(n) the number that are odd; sequence gives odd n such that e(n) > o(n) and e(n)-o(n) == 1 or 2 (mod 6).
1
1, 5, 7, 13, 17, 19, 23, 25, 29, 31, 37, 49, 53, 55, 61, 65, 67, 71, 73, 77, 79, 83, 89, 91, 95, 97, 101, 103, 109, 113, 115, 119, 121, 125, 127, 133, 145, 149, 151, 157, 181, 193, 197, 199, 205, 209, 211, 215, 217, 221, 223, 229, 241, 245, 247, 253, 257, 259
OFFSET
1,2
COMMENTS
Primes in the sequence are not in A065049.
LINKS
MATHEMATICA
aQ[n_] := Module[{d = Reverse[IntegerDigits[n, 2]]}, e = Total@d[[1 ;; -1 ;; 2]]; o = Total@d[[2 ;; -1 ;; 2]]; e > o && MemberQ[{1, 2}, Mod[e - o, 6]]]; Select[Range[1, 260, 2], aQ] (* Amiram Eldar, Sep 12 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Dec 13 2008
EXTENSIONS
More terms from Amiram Eldar, Sep 12 2019
STATUS
approved