This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152786 Integers n such that (n^2)/2 is the arithmetic mean of a pair of twin primes. 5
 6, 12, 42, 48, 72, 84, 90, 174, 204, 264, 306, 372, 408, 456, 474, 546, 594, 600, 642, 750, 852, 882, 936, 972, 978, 1038, 1140, 1212, 1272, 1386, 1470, 1512, 1518, 1584, 1770, 1836, 1902, 1980, 1986, 2130, 2196, 2256, 2262, 2316, 2382, 2652, 2688, 2718 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Square roots of A054735 where these are integer. LINKS Zak Seidov, Table of n, a(n) for n = 1..4288 (All terms up to 10^6.) Zak Seidov, A152786 = 6*A037073: near-duplicates?, seqfan list, Aug 20 2010. FORMULA {n: n^2 = A054735(i), any i}. - R. J. Mathar, Dec 12 2008 a(n) = 6*A037073(n). [Zak Seidov, seqfan list, Aug 20 2010] [From R. J. Mathar, Sep 07 2010] EXAMPLE (6^2)/2=18= mean(17,19); (12^2)/2=72=mean(71,73); (42^2)/2=882=mean(881,883). MATHEMATICA lst={}; Do[p1=Prime[n]; p2=Prime[n+1]; If[p2-p1==2, e=(2*(p1+1))^(1/2); i=Floor[e]; If[e==i, AppendTo[lst, i]]], {n, 3*9!}]; lst (* Second program: *) Select[Map[Sqrt[2 #] &, Mean /@ Select[Partition[Prime@ Range[10^6], 2, 1], Subtract @@ # == -2 &]], IntegerQ] (* Michael De Vlieger, Feb 18 2018 *) PROG (PARI) forstep(n=6, 1e3, 6, if(isprime(n^2/2-1)&&isprime(n^2/2+1), print1(n", "))) \\ Charles R Greathouse IV, Feb 01 2013 CROSSREFS Cf. A014574, A037073, A152788 (cubic version). Subsequence of A074924. - Zak Seidov, Feb 01 2013 Sequence in context: A307181 A052747 A007121 * A267309 A206039 A048069 Adjacent sequences:  A152783 A152784 A152785 * A152787 A152788 A152789 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, Dec 12 2008 EXTENSIONS Edited by R. J. Mathar, Dec 12 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 18:12 EST 2019. Contains 329847 sequences. (Running on oeis4.)