login
Numbers such that every run length in base 2 is 3.
4

%I #8 Jul 27 2015 19:54:07

%S 7,56,455,3640,29127,233016,1864135,14913080,119304647,954437176,

%T 7635497415,61083979320,488671834567,3909374676536,31274997412295,

%U 250199979298360,2001599834386887,16012798675095096,128102389400760775

%N Numbers such that every run length in base 2 is 3.

%C a(n) is the number whose binary representation is A152775(n).

%H Zak Seidov, <a href="/A152776/b152776.txt">Table of n, a(n) for n = 1..100</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8, 1, -8).

%F a(n)= 8*a(n-1) +a(n-2) -8*a(n-3). G.f.: 7x/((1-x)(1-8x)(1+x)). a(n)= (-7*(-1)^n-9+16*8^n)/18 = 7*A033118(n). [From _R. J. Mathar_, Jan 20 2009]

%Y Cf. A043291, A152775, A153435.

%K easy,nonn,base

%O 1,1

%A _Omar E. Pol_, Jan 18 2009

%E More terms from _R. J. Mathar_, Jan 20 2009