

A152740


11 times triangular numbers.


8



0, 11, 33, 66, 110, 165, 231, 308, 396, 495, 605, 726, 858, 1001, 1155, 1320, 1496, 1683, 1881, 2090, 2310, 2541, 2783, 3036, 3300, 3575, 3861, 4158, 4466, 4785, 5115, 5456, 5808, 6171, 6545, 6930, 7326, 7733, 8151, 8580, 9020, 9471, 9933, 10406, 10890
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Sequence found by reading the line from 0, in the direction 0, 11,... and the same line from 0, in the direction 0, 33,..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Axis perpendicular to A195149 in the same spiral.  Omar E. Pol, Sep 18 2011
Sum of the numbers from 5n to 6n.  Wesley Ivan Hurt, Dec 22 2015


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

a(n) = 11*n*(n+1)/2 = 11*A000217(n).
a(n) = a(n1)+11*n with n>0, a(0)=0.  Vincenzo Librandi, Nov 26 2010
a(n) = A069125(n+1)  1.  Omar E. Pol, Oct 03 2011
From Philippe Deléham, Mar 27 2013: (Start)
G.f.: 11*x/(1x)^3.
a(n) = 3*a(n1) 3*a(n2) +a(n3) for n>2, a(0)=0, a(1)=11, a(2)=33.
a(n) = A218530(11n+10).
a(n) = A211013(n)+n = A022269(n)+5n = A022268(n)+6n = A180223(n)+9n = A051865(n)+10n. (End)
a(n) = Sum_{i=5n..6n} i.  Wesley Ivan Hurt, Dec 22 2015


MAPLE

A152740:=n>11*n*(n+1)/2: seq(A152740(n), n=0..60); # Wesley Ivan Hurt, Dec 22 2015


MATHEMATICA

Table[11*n*(n  1)/2, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
LinearRecurrence[{3, 3, 1}, {0, 11, 33}, 100] (* G. C. Greubel, Dec 22 2015 *)


PROG

(MAGMA) [11*n*(n+1)/2 : n in [0..60]]; // Wesley Ivan Hurt, Dec 22 2015
(PARI) x='x+O('x^100); concat(0, Vec(11*x/(1x)^3)) \\ Altug Alkan, Dec 23 2015


CROSSREFS

Cf. A000217, A022268, A022269, A049598, A051865, A069125, A124080, A180223, A195149, A195313, A211013, A218530.
Sequence in context: A132285 A249166 A296543 * A080859 A063036 A163673
Adjacent sequences: A152737 A152738 A152739 * A152741 A152742 A152743


KEYWORD

nonn,easy


AUTHOR

Omar E. Pol, Dec 12 2008


STATUS

approved



