This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152690 Partial sums of superfactorials (A000178). 1
 1, 2, 4, 16, 304, 34864, 24918064, 125436246064, 5056710181206064, 1834938528961266006064, 6658608419043265483506006064, 265790273955000365854215115506006064 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA G.f.: W(0)/(2-2*x) , where W(k) = 1 + 1/( 1 - x*(k+1)!/( x*(k+1)! + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013 a(n) ~ exp(1/12 - 3*n^2/4) * n^(n^2/2 - 1/12) * (2*Pi)^(n/2) / A, where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015 a(n) = n! * G(n+1) + a(n-1), where G(z) is the Barnes G-function. - Daniel Suteu, Jul 23 2016 MATHEMATICA lst={}; p0=1; s0=0; Do[p0*=a[n]; s0+=p0; AppendTo[lst, s0], {n, 0, 4!}]; lst s = 0; lst = {s}; Do[s += BarnesG[n]; AppendTo[lst, s], {n, 2, 13, 1}]; lst (* Zerinvary Lajos, Jul 16 2009 *) Table[Sum[BarnesG[k+1], {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Jul 10 2015 *) CROSSREFS Cf. A152686, A152687, A152688, A152689, A053308, A053309, A053295, A053296. Sequence in context: A112535 A001146 A114641 * A194457 A001128 A280890 Adjacent sequences:  A152687 A152688 A152689 * A152691 A152692 A152693 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, Dec 10 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.