login
A152683
Decimal expansion of log_6 (2).
23
3, 8, 6, 8, 5, 2, 8, 0, 7, 2, 3, 4, 5, 4, 1, 5, 8, 6, 8, 7, 0, 2, 4, 6, 1, 3, 8, 4, 6, 7, 8, 2, 0, 8, 7, 6, 4, 6, 5, 1, 4, 1, 8, 5, 9, 4, 5, 7, 1, 0, 3, 4, 2, 8, 3, 8, 9, 4, 9, 4, 9, 2, 8, 8, 2, 6, 6, 4, 2, 0, 1, 8, 5, 4, 0, 7, 2, 2, 8, 0, 3, 8, 3, 1, 6, 5, 2
OFFSET
0,1
COMMENTS
The upper bound for the ratio of the number of 3x+1 steps to all steps in the Collatz iteration. - T. D. Noe, Apr 30 2010
LINKS
Emmanuel Jeandel, Michael Rao, An aperiodic set of 11 Wang tiles, arXiv:1506.06492 [cs.DM], 2015. See p. 10.
FORMULA
Equals log(2)/log(6) (A002162/A016629), that is, log(2)/(log(2)+log(3)). - Michel Marcus, Aug 18 2018
EXAMPLE
.38685280723454158687024613846782087646514185945710342838949...
MATHEMATICA
RealDigits[Log[6, 2], 10, 120][[1]] (* Harvey P. Dale, Sep 12 2012 *)
PROG
(PARI) default(realprecision, 100); log(2)/log(6) \\ G. C. Greubel, Sep 13 2018
(Magma) SetDefaultRealField(RealField(100)); Log(2)/Log(6); // G. C. Greubel, Sep 13 2018
CROSSREFS
Cf. decimal expansion of log_6(m): this sequence, A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), A154911 (m=18), A155044 (m=19), A155490 (m=20), A155554 (m=21), A155697 (m=22), A155823 (m=23), A155959 (m=24).
Sequence in context: A187061 A363361 A020809 * A154199 A083700 A341747
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Oct 30 2009
STATUS
approved