login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152677 Subsequence of odd terms in A000203 (sum-of-divisors function sigma), in the order in which they occur and with repetitions. 5
1, 3, 7, 15, 13, 31, 39, 31, 63, 91, 57, 93, 127, 195, 121, 171, 217, 133, 255, 403, 363, 183, 399, 465, 403, 399, 511, 819, 307, 847, 549, 381, 855, 961, 741, 1209, 931, 1023, 553, 1651, 921, 781, 1815, 1281, 1143, 1093, 1767, 1953, 871, 2223, 2821, 993, 1995 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equivalently: subsequence of A000203 (sigma) with indices equal to a square or twice a square (A028982).

See A060657 for the set of odd values in the range of the sigma function, i.e., the list of odd values in ordered by increasing size and without repetitions.

LINKS

Table of n, a(n) for n=1..53.

FORMULA

a(n) = A000203(A028982(n)). - R. J. Mathar, Dec 12 2008

MATHEMATICA

Select[DivisorSigma[1, Range[1000]], OddQ[#] &] (* Giovanni Resta, Jan 08 2020 *)

PROG

(PARI) A152677_upto(lim)=apply(sigma, vecsort(concat(vector(sqrtint(lim\1), i, i^2), vector(sqrtint(lim\2), i, 2*i^2)))) \\ Gives [a(n) = sigma(k) with k = A028982(n) <= lim]. - Charles R Greathouse IV, Feb 15 2013, corrected by M. F. Hasler, Jan 08 2020

(MAGMA) [d:k in [1..1000]|IsOdd(d) where d is DivisorSigma(1, k)]; // Marius A. Burtea, Jan 09 2020

CROSSREFS

Cf. A000203 (sigma = sum-of-divisors function), A152678 (even terms in A000203), A028982 (squares and twice the squares).

See A062700 and A023195 for the subsequence resp. subset of primes; A023194 for the indices of A000203 which yield these primes.

Sequence in context: A102032 A086517 A332374 * A135374 A253582 A117589

Adjacent sequences:  A152674 A152675 A152676 * A152678 A152679 A152680

KEYWORD

easy,nonn

AUTHOR

Omar E. Pol, Dec 10 2008

EXTENSIONS

Extended by R. J. Mathar, Dec 12 2008

Edited and definition reworded by M. F. Hasler, Jan 08 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 11:00 EDT 2020. Contains 333083 sequences. (Running on oeis4.)