%I
%S 1,1,6,16,120,540,5040,32256,362880,3024000,39916800,410572800,
%T 6227020800,76281004800,1307674368000,18598035456000,355687428096000,
%U 5762136335155200,121645100408832000,2211729098342400000
%N Number of leading odd entries in all permutations of {1,2,...,n} (see example).
%C a(n) = Sum_{k=0..ceiling(n/2)} k*A152662(n,k).
%F a(2n+1) = (2n+1)!;
%F a(2n) = n(2n)!/(n+1).
%e a(3)=6 because in the permutations 123, 132, 213, 231, 312, 321 we have 1+2+0+0+2+1 = 6 leading odd entries.
%p ao := proc (n) options operator, arrow; factorial(2*n+1) end proc: ae := proc (n) options operator, arrow: n*factorial(2*n)/(n+1) end proc: a := proc (n) if `mod`(n, 2) = 1 then ao((1/2)*n1/2) else ae((1/2)*n) end if end proc: seq(a(n), n = 1 .. 20);
%Y Cf. A152662, A152664, A152665.
%K nonn
%O 1,3
%A _Emeric Deutsch_, Dec 13 2008
