

A152663


Number of leading odd entries in all permutations of {1,2,...,n} (see example).


2



1, 1, 6, 16, 120, 540, 5040, 32256, 362880, 3024000, 39916800, 410572800, 6227020800, 76281004800, 1307674368000, 18598035456000, 355687428096000, 5762136335155200, 121645100408832000, 2211729098342400000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

a(n) = Sum_{k=0..ceiling(n/2)} k*A152662(n,k).


LINKS

Table of n, a(n) for n=1..20.


FORMULA

a(2n+1) = (2n+1)!;
a(2n) = n(2n)!/(n+1).


EXAMPLE

a(3)=6 because in the permutations 123, 132, 213, 231, 312, 321 we have 1+2+0+0+2+1 = 6 leading odd entries.


MAPLE

ao := proc (n) options operator, arrow; factorial(2*n+1) end proc: ae := proc (n) options operator, arrow: n*factorial(2*n)/(n+1) end proc: a := proc (n) if `mod`(n, 2) = 1 then ao((1/2)*n1/2) else ae((1/2)*n) end if end proc: seq(a(n), n = 1 .. 20);


CROSSREFS

Cf. A152662, A152664, A152665.
Sequence in context: A239027 A218976 A173737 * A229560 A113561 A080809
Adjacent sequences: A152660 A152661 A152662 * A152664 A152665 A152666


KEYWORD

nonn


AUTHOR

Emeric Deutsch, Dec 13 2008


STATUS

approved



