login
A vector recursion sequence: k = 1; m = 2; l = 1; a(n)=k*{0,a(n-2),0}+m*{-(m-1)/m,a(n-1)}++m*{a(n-1),-(m-1)/m}+l*{0,0,a(n-4),0,0}.
0

%I #2 Mar 30 2012 17:34:28

%S 1,1,1,1,5,1,1,13,13,1,1,29,58,29,1,1,61,188,188,61,1,1,125,528,815,

%T 528,125,1,1,253,1368,2887,2887,1368,253,1,1,509,3368,9067,12421,9067,

%U 3368,509,1,1,1021,8008,26299,46051,46051,26299,8008,1021,1,1,2045,18568

%N A vector recursion sequence: k = 1; m = 2; l = 1; a(n)=k*{0,a(n-2),0}+m*{-(m-1)/m,a(n-1)}++m*{a(n-1),-(m-1)/m}+l*{0,0,a(n-4),0,0}.

%C The row sums are:

%C {1, 2, 7, 28, 118, 500, 2123, 9018, 38311, 162760, 691472,...}

%F k = 1; m = 2; l = 1; a(n)=k*{0,a(n-2),0}+m*{-(m-1)/m,a(n-1)}++m*{a(n-1),-(m-1)/m}+l*{0,0,a(n-4),0,0}.

%e {1},

%e {1, 1},

%e {1, 5, 1},

%e {1, 13, 13, 1},

%e {1, 29, 58, 29, 1},

%e {1, 61, 188, 188, 61, 1},

%e {1, 125, 528, 815, 528, 125, 1},

%e {1, 253, 1368, 2887, 2887, 1368, 253, 1},

%e {1, 509, 3368, 9067, 12421, 9067, 3368, 509, 1},

%e {1, 1021, 8008, 26299, 46051, 46051, 26299, 8008, 1021, 1},

%e {1, 2045, 18568, 72107, 154295, 197440, 154295, 72107, 18568, 2045, 1}

%t Clear[a, k, m, l] k = 1; m = 2; l = 1; a[0] = {1}; a[1] = {1, 1};

%t a[n_] := a[n] = k*Join[{0}, a[n - 2], {0}] + m*Join[{-(m - 1)/m}, a[n - 1]] + m*Join[a[n - 1], {-(m - 1)/m}] +

%t If[n >= 4, k*Join[{0, 0}, a[n - 4], {0, 0}], Table[0, {i, 0, n}]];

%t Table[a[n], {n, 0, 10}]; Flatten[%]

%K nonn,uned

%O 0,5

%A _Roger L. Bagula_, Dec 10 2008