login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152649 Decimal expansion of Pi^4/72. 12
1, 3, 5, 2, 9, 0, 4, 0, 4, 2, 1, 3, 8, 9, 2, 2, 7, 3, 9, 3, 9, 5, 0, 0, 4, 6, 2, 0, 6, 7, 6, 4, 5, 9, 8, 7, 8, 4, 6, 8, 4, 3, 8, 6, 8, 9, 8, 9, 8, 4, 0, 8, 6, 3, 4, 6, 0, 3, 7, 2, 0, 2, 6, 9, 3, 0, 5, 1, 5, 0, 7, 7, 0, 2, 3, 3, 7, 1, 1, 0, 5, 8, 1, 9, 6, 1, 3, 7, 0, 4, 4, 9, 2, 7, 1, 2, 4, 8, 9, 6, 5, 4, 1, 2, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A division by 2 is missing in Mezo's penultimate formula on page 4.

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..2000

David Borwein and J. M. Borwein, On an intriguing integral and some series related to zeta(4), Proc. Am. Math. Soc. 123 (1995) 1191-1198.

I. Gradsteyn and I. Ryzhik, Table of integrals, series and products, Academic Press, (1980), page 7 (formulas from 0.233.3 to 0.233.5).

Istvan Mezo, Summation of Hyperharmonic Numbers, arXiv:0811.0042 [math.CO], 2008.

FORMULA

Equals A098198/2 = A092425/72.

Equals Sum_{j >= 1} H(j)/j^3 where H(j)=A001008(j)/A002805(j).

Equals 20*Sum_{j >= 1} (2*j)^-4 (see Gradsteyn and Ryzhik in Links section). - A.H.M. Smeets, Sep 18 2018

EXAMPLE

Equals 1.352904042138922739395004620676459878468438689898408634603...

MAPLE

evalf(Pi^4/72, 120); # Muniru A Asiru, Sep 18 2018

MATHEMATICA

RealDigits[Pi^4/72, 10, 120][[1]] (* Harvey P. Dale, Feb 10 2013 *)

PROG

(PARI) Pi^4/72 \\ Michel Marcus, Jul 07 2015

CROSSREFS

Sequence in context: A026193 A026143 A075626 * A186412 A322982 A275846

Adjacent sequences:  A152646 A152647 A152648 * A152650 A152651 A152652

KEYWORD

cons,easy,nonn

AUTHOR

R. J. Mathar, Dec 10 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 22:08 EDT 2019. Contains 322237 sequences. (Running on oeis4.)