login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152625 Prime numbers p such that all of 2p+1, 4p+1, 8p+1, 10p+1, 14p+1 and 16p+1 are composite numbers. 0
197, 223, 227, 229, 257, 263, 283, 311, 317, 379, 383, 389, 457, 461, 463, 467, 521, 541, 569, 607, 661, 701, 751, 773, 787, 839, 859, 863, 881, 887, 907, 971, 991, 1051, 1061, 1091, 1153, 1163, 1171, 1181, 1213, 1217, 1277, 1283, 1301, 1319, 1321, 1373 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Related to Legendre's contribution to Fermat's last theorem: the first case of the Fermat's last theorem is true only if the Diophantine equation x^n + y^n = z^n has integer solutions x,y,z where n is prime such that gcd(n, xyz) = 1, then n > =197.

REFERENCES

A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). - In Russian.

J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses, 2008, p. 59.

Sampson, J.H. "Sophie Germain and the theory of numbers," Arch. Hist. Exact Sci. 41 (1990), 157-161.

LINKS

Table of n, a(n) for n=1..48.

Eric Weisstein's World of Mathematics, Fermat's Last Theorem

EXAMPLE

With p=197 we obtain the composite numbers : 2p+1 = 5*79, 4p+1 =3*263, 8p+1=19*83, 10p+1=27*73, 14p+1=31*89 and 16p+1 =3*1051.

MAPLE

for p from 1 to 2000 do: if type(p, prime)=true and type(2*p+1, prime)=false and type(4*p+1, prime)=false and type(8*p+1, prime)=false and type(10*p+1, prime)=false and type(14*p+1, prime)=false and type(16*p+1, prime)=false then print(p):else fi:od:

CROSSREFS

Sequence in context: A171383 A162873 A182572 * A082246 A159809 A051371

Adjacent sequences:  A152622 A152623 A152624 * A152626 A152627 A152628

KEYWORD

nonn

AUTHOR

Michel Lagneau, Apr 04 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 15:31 EDT 2017. Contains 284273 sequences.