%I #61 Sep 29 2024 03:05:02
%S 1,0,3,16,45,96,175,288,441,640,891,1200,1573,2016,2535,3136,3825,
%T 4608,5491,6480,7581,8800,10143,11616,13225,14976,16875,18928,21141,
%U 23520,26071,28800,31713,34816,38115,41616,45325,49248,53391,57760,62361
%N a(n) = (n-1)^2*(n+1).
%C For n>0 this is the same under substitution of variables as d(d-2)^2, the number of connected components in Bertrand et al.: "We construct a polynomial of degree d in two variables whose Hessian curve has (d-2)^2 connected components using Viro patchworking. In particular, this implies the existence of a smooth real algebraic surface of degree d in RP^3 whose parabolic curve is smooth and has d(d-2)^2 connected components." - _Jonathan Vos Post_, Apr 30 2009
%C For n>0 a(n) is twice the area of the trapezoid created by plotting the four points (n-1,n), (n,n-1), (n*(n-1)/2,n*(n+1)/2), (n*(n+1)/2,(n-1)*n/2). - _J. M. Bergot_, Mar 22 2014
%H Vincenzo Librandi, <a href="/A152618/b152618.txt">Table of n, a(n) for n = 0..1000</a>
%H Benoît Bertand and Erwan Brugallé, <a href="https://doi.org/10.1016/j.crma.2010.01.028">On the number of connected components of the parabolic curve</a>, Comptes Rendus Mathématique, Vol. 348, No. 5-6 (2010), pp. 287-289; <a href="http://arxiv.org/abs/0904.4652">arXiv preprint</a>, arXiv:0904.4652 [math.AG], Apr 29 2009. - _Jonathan Vos Post_, Apr 30 2009
%H Jim Propp and Adam Propp-Gubin, <a href="https://arxiv.org/abs/2409.17117">Counting Triangles in Triangles</a>, arXiv:2409.17117 [math.CO], 2024. See p. 9.
%F a(n) = n^3 - n^2 - n + 1 = A083074(n) + 2. - _Jeremy Gardiner_, Jun 23 2013
%F G.f.: (9*x^2 - 4*x + 1)/(1-x)^4. - _Vincenzo Librandi_, Jun 25 2013
%F a(n+1) = A005449(n) + A002414(n), n > 0. - _Wesley Ivan Hurt_, Oct 06 2013
%F Sum_{n>1} 1/a(n) = (1/24) * (2*Pi^2 - 9). - _Enrique Pérez Herrero_, May 31 2015
%F Sum_{n>=2} (-1)^n/a(n) = (Pi^2 - 3)/24. - _Amiram Eldar_, Jan 13 2021
%F E.g.f.: exp(x)*(x^3+2*x^2-x+1). - _Nikolaos Pantelidis_, Feb 06 2023
%p A152618:=n->(n-1)^2*(n+1); seq(A152618(k), k=0..100); # _Wesley Ivan Hurt_, Oct 06 2013
%t f[n_]:=(n-1)^2*(n+1);f[Range[0,60]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 05 2011*)
%t CoefficientList[Series[(9 x^2 - 4 x + 1)/(1 - x)^4, {x, 0, 40}], x] (* _Vincenzo Librandi_, Jun 25 2013 *)
%o (Magma) [(n-1)^2*(n+1): n in [0..50]]; // _Vincenzo Librandi_, Jun 25 2013
%o (PARI) a(n)=(n+1)*(n-1)^2 \\ _Charles R Greathouse IV_, Mar 21 2014
%K nonn,easy
%O 0,3
%A _Philippe Deléham_, Dec 09 2008