login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 10*a(n-1) - 12*a(n-2) for n > 1; a(0) = 1, a(1) = 4 .
2

%I #20 Jan 22 2024 05:53:34

%S 1,4,28,232,1984,17056,146752,1262848,10867456,93520384,804794368,

%T 6925699072,59599458304,512886194176,4413668442112,37982050091008,

%U 326856479604736,2812780194955264,24205524194295808,208301879603494912,1792552505703399424,15425902501792055296

%N a(n) = 10*a(n-1) - 12*a(n-2) for n > 1; a(0) = 1, a(1) = 4 .

%H Paolo Xausa, <a href="/A152599/b152599.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-12).

%F G.f.: (1-6*x)/(1-10*x+12*x^2).

%F a(n) = Sum_{k=0..n} A147703(n,k)*3^(n-k).

%F a(n) = 2^n*A052961(n). - _R. J. Mathar_, Jun 14 2016

%t LinearRecurrence[{10, -12}, {1, 4}, 25] (* _Paolo Xausa_, Jan 19 2024 *)

%Y Cf. A052961, A006012, A147703, A152596.

%K nonn,easy

%O 0,2

%A _Philippe Deléham_, Dec 09 2008