login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152587 Generalized Fermat numbers: 14^(2^n) + 1. 2
15, 197, 38417, 1475789057, 2177953337809371137, 4743480741674980702700443299789930497, 22500609546641425009067997918450033531906583365663182830821882796510806017 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

There appears to be no divisibility rule for this sequence.

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 0..9

Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.

OEIS Wiki, Generalized Fermat numbers

FORMULA

a(0) = 15, a(n)=(a(n-1)-1)^2 + 1, n >= 1.

a(n) = 13*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 13*(empty product, i.e., 1)+ 2 = 15 = a(0). This implies that the terms, all odd, are pairwise coprime. - Daniel Forgues, Jun 20 2011

EXAMPLE

a(0) = 14^1+1 = 15 = 13*(1)+2 = 13(empty product)+2.

a(1) = 14^2+1 = 197 = 13*(15)+2.

a(2) = 14^4+1 = 38417 = 13*(15*197)+2.

a(3) = 14^8+1 = 1475789057 = 13*(15*197*38417)+2.

a(4) = 14^16+1 = 2177953337809371137 = 13*(15*197*38417*1475789057)+2.

a(5) = 14^32+1 = 4743480741674980702700443299789930497 = 13*(15*197*38417*1475789057*2177953337809371137)+2.

PROG

(PARI) g(a, n) = if(a%2, b=2, b=1); for(x=0, n, y=a^(2^x)+b; print1(y", "))

(MAGMA) [14^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011

(PARI) a(n)=14^(2^n)+1 \\ Charles R Greathouse IV, Jul 29 2011

CROSSREFS

Cf. A000215.

Sequence in context: A125472 A098300 A185899 * A060337 A180789 A078264

Adjacent sequences:  A152584 A152585 A152586 * A152588 A152589 A152590

KEYWORD

nonn,easy

AUTHOR

Cino Hilliard, Dec 08 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 23:59 EDT 2019. Contains 327207 sequences. (Running on oeis4.)