%I #4 Jul 11 2015 16:20:03
%S 1,2,7,42,495,7436,153361,3853322,116503839,4127612326,167061660005,
%T 7671346786170,392298901133895,22113791358359574,1365967717507556804,
%U 91549507266620360316,6624242349107514460269,514871138228210665592112
%N Largest term in row n of triangle A152555.
%C Compare to row sums of triangle A152555: 2*(2n+2)^(n-1).
%C Triangle A152555 lists coefficients in a q-analog of the function LambertW(-2x)/(-2x).
%o (PARI) {a(n)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); vecsort(Vec(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))))[n*(n-1)/2+1]}
%Y Cf. A152555, A152556(q=-1), A152557 (q=2) A152558 (q=3).
%K nonn
%O 0,2
%A _Paul D. Hanna_, Dec 07 2008