login
A152492
a(n) = number of integers of the form (n*k)^2/(k^2 - n^2).
2
0, 0, 1, 1, 0, 2, 0, 1, 1, 1, 0, 8, 0, 0, 4, 1, 0, 2, 0, 4, 3, 0, 0, 9, 0, 0, 1, 2, 0, 7, 0, 1, 2, 0, 1, 8, 0, 0, 1, 4, 0, 5, 0, 1, 5, 0, 0, 9, 0, 1, 1, 1, 0, 2, 1, 4, 1, 0, 0, 23, 0, 0, 3, 1, 1, 4, 0, 1, 1, 2, 0, 10, 0, 0, 4, 1, 0, 4, 0, 4, 1, 0, 0, 17, 0, 0, 1, 1, 0, 8
OFFSET
1,6
COMMENTS
k needs to be checked only up through n^2+1 since beyond this n^2 < (n*k)^2/(k^2 - n^2) < n^2 + 1 and thus can't be an integer. - Micah Manary, Aug 27 2022
LINKS
PROG
(PARI) a(n) = sum(k=1, n^2+1, if (k!=n, denominator((n*k)^2/(k^2 - n^2))==1)); \\ Michel Marcus, Oct 28 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ctibor O. Zizka, Dec 06 2008
EXTENSIONS
More terms from Micah Manary, Aug 07 2022
STATUS
approved