login
A152479
Products of partition numbers of Fibonacci numbers.
2
1, 1, 1, 2, 6, 42, 924, 93324, 73912608, 909864204480, 410599878740916480, 20528320742539954765344000, 462721784193718931971550165554080000, 28136323479948516473366521258111350797954332320000
OFFSET
1,4
LINKS
FORMULA
a(n) = Prod_{1<=j<=n-1} A072214(j). - Robert Israel, Oct 20 2016
MAPLE
A072214:= [seq(combinat:-numbpart(combinat:-fibonacci(n)), n=1..20)]:
seq(mul(A072214[i], i=1..n-1), n=1..20); # Robert Israel, Oct 20 2016
MATHEMATICA
f[n_]:=Fibonacci[n]; p[n_]:=PartitionsP[f[n]]; a[n_]:=Product[p[i], {i, 1, n}];
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved