This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152460 Primes p such that there exist positive integer k and prime q with p > q and 3^k = p + 2q or 3^k = q + 2p. 1
 3, 5, 11, 13, 17, 23, 29, 31, 37, 43, 47, 59, 67, 71, 97, 101, 103, 107, 109, 113, 137, 149, 157, 181, 197, 229, 233, 239, 251, 263, 269, 271, 281, 283, 307, 311, 313, 331, 347, 349, 353, 359, 367, 383, 431, 467, 503, 523, 563, 571, 587, 607, 643, 647, 683, 691 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) is the greater of primes (p,q) in representations of a power of 3 in Lemoine-Levy's form p+2q (see A046927) If 3^n=p+2q, then 3^(n-1)<=max(p,q)<3^n. Therefore the sets of greater primes for different powers of 3 do not intersect. LINKS FORMULA If A(x) is the counting function of a(n)<=x, then A(x)=O(xloglogx/(logx)^2). EXAMPLE 27=5+2*11=13+2*7=17+2*5=23+2*2, so that 11,13,17 and 23 are in the sequence. PROG (PARI) aa(n)={my(v=[]); forprime(p=2, n\2, q=n-p*2; if(isprime(q), v=concat(v, (max(p, q))))); vecsort(v, , 8)}; for(n=2, 7, v=aa(3^n); for(i=1, #v, print1(v[i], ", "))) CROSSREFS Cf. A103151, A086081, A152451 Sequence in context: A076757 A178942 A045404 * A130097 A020612 A072539 Adjacent sequences:  A152457 A152458 A152459 * A152461 A152462 A152463 KEYWORD nonn AUTHOR Vladimir Shevelev, Dec 05 2008, Dec 12 2008 EXTENSIONS Program and editing by Charles R Greathouse IV, Nov 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 13:31 EDT 2019. Contains 328161 sequences. (Running on oeis4.)