

A152447


Decimal expansion of the sum_q 1/(q*(q1)) over the semiprimes q = A001358.


3



1, 7, 1, 0, 5, 1, 8, 9, 2, 9, 7, 9, 9, 9, 6, 6, 3, 6, 6, 2, 2, 2, 0, 2, 5, 6, 4, 3, 7, 2, 3, 7, 4, 2, 1, 3, 9, 9, 1, 2, 4, 6, 6, 1, 2, 0, 3, 5, 5, 0, 0, 5, 9, 7, 4, 9, 1, 0, 7, 9, 9, 7, 0, 7, 0, 0, 4, 6, 9, 9, 2, 9, 7, 2, 8, 4, 8, 1, 2, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The semiprime analog of A136141. To obtain the (smaller) sum over the squarefree semiprimes A006881, subtract the prime zeta functions of 4 ( A085964 ), 6, 8 etc. from this constant here. The first term in the representation as the geometric series in powers 1/q^s is in A117543 .


LINKS

Table of n, a(n) for n=0..79.
R. J. Mathar, Series of reciprocal powers of kalmost primes, constant B_{2,1} in table 8.


FORMULA

Equals 0.17105189297999663662220256437237421399124661203550059749107997... = 1/(4*3)+1/(6*5)+1/(9*8)+1/(10*9)+...


CROSSREFS

Sequence in context: A231096 A240907 A179376 * A198611 A198212 A217245
Adjacent sequences: A152444 A152445 A152446 * A152448 A152449 A152450


KEYWORD

cons,nonn


AUTHOR

R. J. Mathar, Dec 04 2008


STATUS

approved



