login
Riordan matrix (1/(1-x-x^2),x/(1-x-x^2)^2).
2

%I #10 Feb 21 2014 03:56:10

%S 1,1,1,2,3,1,3,9,5,1,5,22,20,7,1,8,51,65,35,9,1,13,111,190,140,54,11,

%T 1,21,233,511,490,255,77,13,1,34,474,1295,1554,1035,418,104,15,1,55,

%U 942,3130,4578,3762,1925,637,135,17,1,89,1836,7285,12720,12573,7865,3276

%N Riordan matrix (1/(1-x-x^2),x/(1-x-x^2)^2).

%C From _Philippe Deléham_, Feb 20 2014: (Start)

%C T(n,0) = A000045(n+1);

%C T(n+1,1) = A001628(n);

%C T(n+2,2) = A001873(n);

%C T(n+3,3) = A001875(n).

%C Row sums are A238236(n). (End)

%F a(n,k) = sum( binomial(n-j-k,2k) binomial(n-j-k,j), j=0...(n-k)/2 )

%F a(n,k) = sum( binomial(i+2k,2k) binomial(n-i+k,i+2k), i=0...(n - k)/2 )

%F Recurrence: a(n+4,k+1) - 2 a(n+3,k+1) - a(n+3,k) - a(n+2,k+1) + 2 a(n+1,k+1) + a(n,k+1) = 0

%F GF for columns: 1/(1-x-x^2)(x/(1-x-x^2)^2)^k

%F GF: (1-x-x^2)/((1-x-x^2)^2-xy)

%F T(n,k) = A037027(n+k, 2*k). - _Philippe Deléham_, Feb 20 2014

%e Triangle begins:

%e 1;

%e 1, 1;

%e 2, 3, 1;

%e 3, 9, 5, 1;

%e 5, 22, 20, 7, 1;

%e 8, 51, 65, 35, 9, 1;

%e 13, 111, 190, 140, 54, 11, 1;

%e 21, 233, 511, 490, 255, 77, 13, 1, etc.

%e - _Philippe Deléham_, Feb 20 2014

%Y The first row is given by A000045.

%Y Cf. A037027, A238241.

%K nonn,tabl,easy

%O 0,4

%A _Emanuele Munarini_, Dec 04 2008, Dec 05 2008