login
A152437
(17^n - 1)/(2^(5 - (n % 2))).
2
0, 1, 9, 307, 2610, 88741, 754299, 25646167, 217992420, 7411742281, 62999809389, 2141993519227, 18206944913430, 619036127056621, 5261807079981279, 178901440719363487, 1520662246114589640, 51702516367896047761
OFFSET
0,3
FORMULA
From Colin Barker, Apr 30 2014: (Start)
a(n) = (-1)*((-3+(-1)^n)*(-1+17^n))/64.
a(n) = 290*a(n-2)-289*a(n-4).
G.f.: x*(17*x^2+9*x+1) / ((x-1)*(x+1)*(17*x-1)*(17*x+1)). (End)
MAPLE
A152437:=n->(17^n-1)/(2^(5-(n mod 2))); seq(A152437(n), n=0..20); # Wesley Ivan Hurt, Apr 30 2014
MATHEMATICA
a[n_] :=(17^n - 1)/(2^(5 - Mod[n, 2])); Table[a[n], {n, 0, 30}]
LinearRecurrence[{0, 290, 0, -289}, {0, 1, 9, 307}, 30] (* Harvey P. Dale, May 21 2015 *)
PROG
(PARI) concat(0, Vec((17*x^3+9*x^2+x)/(289*x^4-290*x^2+1) + O(x^100))) \\ Colin Barker, Apr 30 2014
CROSSREFS
Sequence in context: A197067 A348902 A279449 * A296802 A231133 A163702
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Dec 04 2008
STATUS
approved