

A152431


Eigentriangle, row sums = A000110, the Bell numbers.


3



1, 1, 1, 2, 1, 2, 6, 2, 2, 5, 22, 6, 4, 5, 15, 92, 22, 12, 10, 15, 52, 426, 92, 44, 30, 30, 52, 203, 2146, 426, 184, 110, 90, 104, 203, 877, 11624, 2146, 852, 460, 330, 312, 406, 877, 4140, 67146, 11624, 4292, 2130, 1380, 1144, 1218, 1754, 4140, 21147
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Row sums = the Bell numbers, A000110, starting with offset 1: (1, 2, 5, 15, 52,...).
Left border = A074664 (1, 1, 2, 6, 22 92, 426,...), the INVERTi transform of (1, 2, 5, 15, 52,...).
Sum of nth row terms = rightmost term of next row.


LINKS

Table of n, a(n) for n=1..55.


FORMULA

Triangle read by rows, M*Q. M = an infinite lower triangular matrix with A074664 in every column: (1, 1, 2, 6, 22, 92, 426,...). Q = a matrix with the Bell numbers (1, 1, 2, 5, 15,...) as the main diagonal and the rest zeros.


EXAMPLE

First few rows of the triangle =
1;
1, 1;
2, 1, 2;
6, 2, 2, 5;
22, 6, 4, 5, 15;
92, 22, 12, 10, 15, 52;
426, 92, 44, 30, 30, 52, 203;
2146, 426, 184, 110, 90, 104, 203, 877;
11624, 2146, 852, 460, 330, 312, 406, 877, 4140;
67146, 11624, 4292, 2130, 1380, 1144, 1218, 1754, 4140, 21147;
411142, 67146, 23248, 10730, 6390, 4784, 4466, 5262, 8280, 21147, 115975;
...
Row 4 = (6, 2, 2, 5) = termwise products of (6, 2, 1, 1) and (1, 1, 2, 5).


CROSSREFS

A000110, A074664
Sequence in context: A341409 A284466 A258615 * A143965 A182073 A328001
Adjacent sequences: A152428 A152429 A152430 * A152432 A152433 A152434


KEYWORD

eigen,nonn,tabl


AUTHOR

Gary W. Adamson, Dec 04 2008


STATUS

approved



