login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152416 Decimal expansion of 2 - Pi^2/6. 2

%I

%S 3,5,5,0,6,5,9,3,3,1,5,1,7,7,3,5,6,3,5,2,7,5,8,4,8,3,3,3,5,3,9,7,4,8,

%T 1,0,7,8,1,0,5,0,0,9,8,7,9,3,2,0,1,5,6,2,2,6,4,4,4,1,7,7,0,6,2,9,9,9,

%U 2,5,2,9,5,9,6,7,9,9,1,2,6,1,6,6,3,7,1,0,9,9,3,8,0,2,4,1,2,9,4,6,9,5,9,9,5

%N Decimal expansion of 2 - Pi^2/6.

%C Essentially the 9's complement of the digits of A013661, starting with the second. Consider the constants N(s) = Sum_{n >= 2} 1/(n^s*(n-1)) = s - Sum_{k=2..s} Zeta(k), where Zeta is Riemann's zeta function. N(1)=1 and this constant here is N(2).

%C The proportion of triangles formed by random lines in a plane (see Theorem 6 in Miles link). - _Michel Marcus_, Sep 04 2015

%H Mathematical Reflections, <a href="https://www.awesomemath.org/wp-pdf-files/math-reflections/mr-2013-04/mr_3_2013_solutions.pdf">Solution to Problem U268</a>, Issue 3, 2013, p 17.

%H R. E. Miles, <a href="http://www.pnas.org/content/52/4/901.full.pdf">Random polygons determined by random lines in a plane</a>, PNAS 1964 52 (4) 901-907.

%F Equals 2 - A013661.

%F Equals lim_{n->oo} (1/n^2)*Sum_{k=2..n^2-1} (fractional_part(n/sqrt(k))). See Mathematical Reflections link. - _Michel Marcus_, Jan 06 2017

%e Equals 0.355065933151773563527584833353974810781050098793201562264441770...

%p evalf(2-Pi^2/6);

%t First@ RealDigits[N[2 - Pi^2/6, 120]] (* _Michael De Vlieger_, Sep 04 2015 *)

%o (PARI) 2 - Pi^2/6 \\ _Michel Marcus_, Jan 06 2017

%Y Cf. A013661.

%K cons,easy,nonn

%O 0,1

%A _R. J. Mathar_, Dec 03 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 18:51 EDT 2019. Contains 326133 sequences. (Running on oeis4.)