OFFSET
0,1
COMMENTS
Essentially the 9's complement of the digits of A013661, starting with the second. Consider the constants N(s) = Sum_{n >= 2} 1/(n^s*(n-1)) = s - Sum_{k=2..s} Zeta(k), where Zeta is Riemann's zeta function. N(1)=1 and this constant here is N(2).
The proportion of triangles formed by random lines in a plane (see Theorem 6 in Miles link). - Michel Marcus, Sep 04 2015
LINKS
R. J. Mathar, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 (2009) Section 4.1.
Mathematical Reflections, Solution to Problem U268, Issue 3, 2013, p. 17.
R. E. Miles, Random polygons determined by random lines in a plane, PNAS 1964 52 (4) 901-907.
FORMULA
Equals 2 - A013661.
Equals lim_{n->oo} (1/n^2)*Sum_{k=2..n^2-1} (fractional_part(n/sqrt(k))). See Mathematical Reflections link. - Michel Marcus, Jan 06 2017
From Amiram Eldar, Aug 09 2020: (Start)
Equals Sum_{k>=1} 1/(k*(k+1)^2) = Sum_{k>=2} 1/A045991(k).
Equals Integral_{x=0..1} log(x)*log(1-x) dx. (End)
EXAMPLE
Equals 0.355065933151773563527584833353974810781050098793201562264441770...
MAPLE
evalf(2-Pi^2/6);
MATHEMATICA
First@ RealDigits[N[2 - Pi^2/6, 120]] (* Michael De Vlieger, Sep 04 2015 *)
PROG
(PARI) 2 - Pi^2/6 \\ Michel Marcus, Jan 06 2017
CROSSREFS
KEYWORD
AUTHOR
R. J. Mathar, Dec 03 2008
STATUS
approved