|
|
A152292
|
|
Primes p of the form : (p-n)/(n+1)=prime and (n+1)*p+n=prime. n=2.
|
|
5
|
|
|
17, 23, 59, 89, 239, 269, 293, 383, 419, 503, 953, 1013, 1193, 1259, 1823, 1979, 2129, 2633, 2789, 3209, 3389, 4229, 5099, 5333, 6089, 6299, 6803, 7019, 7673, 7853, 8123, 8513, 8753, 8819, 9059, 9203, 10169, 10223, 10589, 10853, 10979, 11159, 12689
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This is the general form : (p-n)/(n+1)=prime and (n+1)*p+n=prime; 'Safe' primes and 'Sophie Germain' primes just one part of this general form; If n=1 then we got 'Safe' primes and 'Sophie Germain' primes.
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
MAPLE
|
Res:= NULL: count:= 0:
q:= 1:
while count < 100 do
q:= nextprime(q);
if isprime(3*q+2) and isprime(9*q+8)
then Res:= Res, 3*q+2; count:= count+1
fi
od:
Res; # Robert Israel, Mar 07 2018
|
|
MATHEMATICA
|
lst={}; n=2; Do[p=Prime[k]; If[PrimeQ[(p-n)/(n+1)]&&PrimeQ[(n+1)*p+n], AppendTo[lst, p]], {k, 7!}]; lst
|
|
PROG
|
(PARI) lista(nn) = forprime(p=17, nn, if(isprime(3*p+2) && isprime(p\3), print1(p", "))); \\ Altug Alkan, Mar 07 2018
(MAGMA) [NthPrime(n): n in [5..2*10^3] | IsPrime(NthPrime(n) div 3) and IsPrime(3*NthPrime(n)+2)]; // Vincenzo Librandi, Mar 08 2018
|
|
CROSSREFS
|
Cf. A059455, A152293, A152294, A152295, A152388.
Sequence in context: A126329 A130098 A046123 * A214493 A039319 A043142
Adjacent sequences: A152289 A152290 A152291 * A152293 A152294 A152295
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Dec 02 2008
|
|
STATUS
|
approved
|
|
|
|