The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152283 Coefficients in a q-analog of the LambertW function at q=3: A(x) = Sum_{n>=0} a(n)*x^n/faq(n,3) where faq(n,q) = q-factorial of n. 2
 1, 1, 5, 92, 5621, 1093236, 663362421, 1242109529088, 7129029760138649, 124860091946887218320, 6652206059042029394600021, 1075572123264132205051327968256, 526826946994724781414669857330392909 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA G.f. satisfies: A(x) = e_q( x*A(x), 3) and A( x/e_q(x,3) ) = e_q(x,3) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function. G.f.: A(x) = (1/x)*Series_Reversion( x/e_q(x,3) ). a(n) = Sum_{k=0..n(n-1)/2} A152290(n,k)*3^k. a(n) = faq(n,3)*Sum_{pi} n!/((n-k+1)!*Product_{i=1..n} (e(i)!*faq(i,3)^e(i))), where pi runs through all nonnegative integer solutions of e(1)+2*e(2)+...+n*e(n)=n and k=e(1)+e(2)+...+e(n). [From Vladeta Jovovic, Dec 03 2008] EXAMPLE G.f.: A(x) = 1 + x + 5/4*x^2 + 92/52*x^3 + 5621/2080*x^4 + 1093236/251680*x^5 +... G.f. satisfies: A(x) = e_q( x*A(x), 3) where the q-exponential series is: e_q(x,q) = 1 + x + x^2/faq(2,q) + x^3/faq(3,q) +...+ x^n/faq(n,q) +... e_q(x,3) = 1 + x + x^2/4 + x^3/52 + x^4/2080 + x^5/251680 +... The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1): faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ... PROG (PARI) {a(n, q=3)=local(e_q=1+sum(j=1, n, x^j/prod(i=1, j, (q^i-1)/(q-1))), LW_q=serreverse(x/e_q+x^2*O(x^n))/x); polcoeff(LW_q+x*O(x^n), n, x)*prod(i=1, n, (q^i-1)/(q-1))} CROSSREFS Cf. A152290, A152282 (q=2). Sequence in context: A222903 A024069 A295407 * A205344 A270408 A000365 Adjacent sequences:  A152280 A152281 A152282 * A152284 A152285 A152286 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 02 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 16:31 EDT 2021. Contains 342949 sequences. (Running on oeis4.)