The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152268 A hidden Markov recursion involving the matrices: M0 = {{0, 1}, {1, 1/2}}; M = {{0, 2}, {2, 1}}; as Mh=M0.M.(M0+I); v[(n)=Mh.v(n-1): first element of v. 1

%I

%S 0,1,7,41,231,1289,7175,39913,221991,1234633,6866503,38188457,

%T 212387175,1181202569,6569320583,36535623529,203194800039,

%U 1130078612041,6284991883975,34954314291497,194400264968679,1081167340448777

%N A hidden Markov recursion involving the matrices: M0 = {{0, 1}, {1, 1/2}}; M = {{0, 2}, {2, 1}}; as Mh=M0.M.(M0+I); v[(n)=Mh.v(n-1): first element of v.

%C Characteristic Polynomial is: 8 - 7 x + x^2. Binary switching of the IdentityMatrix[2] uncovers opposite signed A006131 with characteristic polynomial -4 - x + x^2.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-8).

%F M0 = {{0, 1}, {1, 1/2}}; M = {{0, 2}, {2, 1}};

%F as Mh=M0.M.(M0+I); v[(n)=Mh.v(n-1):

%F a(n) first element of -v(n)[[1]]/2.

%F From _R. J. Mathar_, Dec 04 2008: (Start)

%F a(n) = 7*a(n-1) - 8*a(n-2).

%F G.f.: x/(1-7x+8x^2). (End)

%F a(n) = (1/17)*sqrt(17)*((7/2 + (1/2)*sqrt(17))^n - (7/2 - (1/2)*sqrt(17))^n), with n >= 0. - _Paolo P. Lava_, Feb 11 2009

%t Clear[M, M0, Mh, v];

%t M0 = {{0, 1}, {1, 1/2}}; M = {{0, 2}, {2, 1}};

%t Mh = M0.(M.Inverse[IdentityMatrix[2] + M0]);

%t v[0] = {0, 1};

%t v[n_] := v[n] = Mh.v[n - 1]

%t Table[ -v[n][[1]]/2, {n, 0, 30}]

%o (Sage) [lucas_number1(n,7,8) for n in range(0, 22)] # _Zerinvary Lajos_, Apr 23 2009

%Y Cf. A006131.

%K nonn,easy

%O 0,3

%A _Roger L. Bagula_, Dec 01 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 21:58 EST 2020. Contains 338941 sequences. (Running on oeis4.)