login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152238 A modulo two parity function as a triangle sequence:k=2; t(n,m)=Binomial[n,m]+p(n,m); Always even parity function: p(n,m)=If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k* Binomial[n, m], 0]]. 0
1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 12, 18, 12, 1, 1, 25, 30, 30, 25, 1, 1, 18, 75, 60, 75, 18, 1, 1, 35, 105, 175, 175, 105, 35, 1, 1, 24, 84, 168, 210, 168, 84, 24, 1, 1, 45, 108, 252, 378, 378, 252, 108, 45, 1, 1, 30, 225, 360, 630, 756, 630, 360, 225, 30, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row sums are: {1, 2, 8, 32, 44, 112, 248, 632, 764, 1568, 3248,...}. The k is added to give a quantum level to the resulting symmetrical functions.

LINKS

Table of n, a(n) for n=0..65.

FORMULA

t(n,m)=Binomial[n,m]+p(n,m);

k=2;

p(n,m)=If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k* Binomial[n, m], 0]].

EXAMPLE

{1},

{1, 1},

{1, 6, 1},

{1, 15, 15, 1},

{1, 12, 18, 12, 1},

{1, 25, 30, 30, 25, 1},

{1, 18, 75, 60, 75, 18, 1},

{1, 35, 105, 175, 175, 105, 35, 1},

{1, 24, 84, 168, 210, 168, 84, 24, 1},

{1, 45, 108, 252, 378, 378, 252, 108, 45, 1},

{1, 30, 225, 360, 630, 756, 630, 360, 225, 30, 1}

MATHEMATICA

Clear[p];

k=2;

p[n_, m_] = If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k*Binomial[n, m], 0]];

Table[Table[Binomial[n, m] + p[n, m], {m, 0, n}], {n, 0, 10}];

Flatten[%]

CROSSREFS

Sequence in context: A230073 A143210 A205133 * A086645 A168291 A154980

Adjacent sequences:  A152235 A152236 A152237 * A152239 A152240 A152241

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Nov 30 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 30 19:57 EDT 2014. Contains 247475 sequences.