login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152238 A modulo two parity function as a triangle sequence:k=2; t(n,m)=Binomial[n,m]+p(n,m); Always even parity function: p(n,m)=If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k* Binomial[n, m], 0]]. 0
1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 12, 18, 12, 1, 1, 25, 30, 30, 25, 1, 1, 18, 75, 60, 75, 18, 1, 1, 35, 105, 175, 175, 105, 35, 1, 1, 24, 84, 168, 210, 168, 84, 24, 1, 1, 45, 108, 252, 378, 378, 252, 108, 45, 1, 1, 30, 225, 360, 630, 756, 630, 360, 225, 30, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row sums are: {1, 2, 8, 32, 44, 112, 248, 632, 764, 1568, 3248,...}. The k is added to give a quantum level to the resulting symmetrical functions.

LINKS

Table of n, a(n) for n=0..65.

FORMULA

t(n,m)=Binomial[n,m]+p(n,m);

k=2;

p(n,m)=If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k* Binomial[n, m], 0]].

EXAMPLE

{1},

{1, 1},

{1, 6, 1},

{1, 15, 15, 1},

{1, 12, 18, 12, 1},

{1, 25, 30, 30, 25, 1},

{1, 18, 75, 60, 75, 18, 1},

{1, 35, 105, 175, 175, 105, 35, 1},

{1, 24, 84, 168, 210, 168, 84, 24, 1},

{1, 45, 108, 252, 378, 378, 252, 108, 45, 1},

{1, 30, 225, 360, 630, 756, 630, 360, 225, 30, 1}

MATHEMATICA

Clear[p];

k=2;

p[n_, m_] = If[Mod[Binomial[n, m], 2] == 0, 2^(k - 1)*Binomial[n, m], If[Mod[Binomial[n, m], 2] == 1 && Binomial[n, m] > 1, 2^k*Binomial[n, m], 0]];

Table[Table[Binomial[n, m] + p[n, m], {m, 0, n}], {n, 0, 10}];

Flatten[%]

CROSSREFS

Sequence in context: A230073 A143210 A205133 * A086645 A168291 A154980

Adjacent sequences:  A152235 A152236 A152237 * A152239 A152240 A152241

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Nov 30 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 07:46 EST 2014. Contains 252297 sequences.