OFFSET
0,1
COMMENTS
This sequence analogous to the 4 base DNA coding problem into length 3 codons. It interprets the digits of Pi as if they were a DNA coding sequence. There are 24 =4! ways that you can assign bases to the numbers/ symbols. This sequence is the answer to the question of how a normal "noise" with an equal appearing digits set could also be a code of information of an higher type.
FORMULA
BBP Pi digits modulo 4: a(n)=Floor[Mod[(4/(8*n + 1) - 2/(8*n + 4) - 1/(8*n + 5) - 1/(8*n + 6))*16^n, 4]].
MATHEMATICA
Clear[a0, b0, c0, f, a, b, c]; f[n_] = Floor[Mod[(4/(8*n + 1) - 2/(8*n + 4) - 1/(8*n + 5) - 1/(8*n + 6))*16^n, 4]]; a0 = Table[{f[n], f[n + 1], f[n + 2]}, {n, 0, 300, 3}]; b0 = Flatten[Table[{a, b, c}, {a, 0, 3}, {b, 0, 3}, {c, 0, 3}], 2]; Length[b0]; c0 = Delete[Union[Flatten[Table[If[a0[[n]] == b0[[m]], {n, m}, {}], {n, 1, Length[a0]}, {m, 1, Length[b0]}], 1]], 1]; d0 = Table[c0[[n]][[2]], {n, 1, Length[c0]}]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Roger L. Bagula and Gary W. Adamson, Nov 29 2008
STATUS
approved