login
A152153
Positive residues of Pepin's Test for Fermat numbers using the base 3.
4
0, 4, 16, 256, 65536, 10324303, 11860219800640380469, 110780954395540516579111562860048860420, 5864545399742183862578018016183410025465491904722516203269973267547486512819
OFFSET
0,2
COMMENTS
For n>=1 the Fermat Number F(n) is prime if and only if 3^((F(n) - 1)/2) is congruent to -1 (mod F(n)).
REFERENCES
M. Krizek, F. Luca & L. Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001, pp. 42-43.
LINKS
Chris Caldwell, The Prime Pages: Pepin's Test.
FORMULA
a(n) = 3^((F(n) - 1)/2) (mod F(n)), where F(n) is the n-th Fermat Number
EXAMPLE
a(4) = 3^(32768) (mod 65537) = 65536 = -1 (mod F(4)), therefore F(4) is prime.
a(5) = 3^(2147483648) (mod 4294967297) = 10324303 (mod F(5)), therefore F(5) is composite.
CROSSREFS
KEYWORD
nonn
AUTHOR
Dennis Martin (dennis.martin(AT)dptechnology.com), Nov 27 2008
STATUS
approved