

A152124


Number of partitions of a 2 x n rectangle into connected pieces consisting of unit squares cut along lattice lines (like a 2d analog of a partition into integers) in which each piece has rotational symmetry.


3



1, 2, 8, 36, 162, 746, 3420, 15738, 72352, 332850, 1530928, 7042422, 32394478, 149015678, 685471704, 3153185542, 14504703924, 66721946584, 306922286796, 1411848979422, 6494534685710, 29874996141112, 137425609255358, 632160693109496, 2907952479953454
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Hugo van der Sanden, Table of n, a(n) for n = 0..100


FORMULA

Let u(n) represent the number of decompositions of a 1 x n rectangle.
Then: u(n) = 2^(n1) for n > 0, u(n) = 1 for n = 0.
Let t(n) represent the number of decompositions of a 2 x n rectangle such that a single piece includes the whole of the leftmost and rightmost columns.
Then: t(n) = t(n2) + sum_1^{(n3)/2}{ 2 u(i)^2 t(n2i2) }
Let s(m, n) represent the number of decompositions of a 2 x n rectangle with a 1 x m spike attached to the side.
Then for m > 0: s(m, n) = sum_1^m{ s(mi, n) } + sum_1^n{ s(i, ni) } + sum_m^{(n+m1)/2}{ u(im) sum_1^{n+m2i}{ t(j) s(i, n+m2ij) } } and for m = 0: s(m, n) = sum_1^n{ s(i, ni) } + sum_1^n{ t(i) s(0, ni) } + sum_1^{(n1)/2){ u(i) sum_1^{n2i}{ t(j) s(i, n2ij) } } (Note that these sums can be taken to infinity if the functions are defined as zero when any argument is negative.)
We get t(n) = [ 0 1 1 1 1 3 3 13 13 59 59 269 269 1227 1227 5597 5597 25531 ... ] = A052984((n  3) / 2) with recurrence a(n) = 5a(n1)2a(n2), a(0) = 1, a(1) = 3.
This gives a much faster way to calculate values for the sequence (as s(0, n)).


EXAMPLE

Example: the partitions comprising a(2)=8 are:
AA AA AB AA AB BC BA AB
AA BB AB BC AC AA CA CD
I.e., exactly those of A078469(2)=12 except for the 4 rotations of the one partition that includes an asymmetric piece:
AA
AB


CROSSREFS

Cf. A078057, A152113.
Sequence in context: A228197 A326244 A027743 * A147722 A089387 A206902
Adjacent sequences: A152121 A152122 A152123 * A152125 A152126 A152127


KEYWORD

nonn


AUTHOR

Hugo van der Sanden, Mar 23 2009


EXTENSIONS

Entries changed by N. J. A. Sloane to match the bfile, Oct 04 2010


STATUS

approved



