This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152118 a(n) = product( 4 +4*cos(k*Pi/n)^2, k=1..(n-1)/2 ). 2
 1, 1, 1, 5, 6, 29, 35, 169, 204, 985, 1189, 5741, 6930, 33461, 40391, 195025, 235416, 1136689, 1372105, 6625109, 7997214, 38613965, 46611179, 225058681, 271669860, 1311738121, 1583407981, 7645370045, 9228778026, 44560482149, 53789260175, 259717522849 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Sequence of products: Product[m + 4*Cos[k*Pi/n]^2, {k, 1, (n - 1)/2}; m=1,2,3,4-> A000045, A002530, A136211 and this one. Apparently the same as A041011 after the initial term. - R. J. Mathar, Nov 27 2008 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1). FORMULA From Colin Barker, Oct 23 2013: (Start) a(n) = 6*a(n-2)-a(n-4) for n>4. G.f.: (x^4-x^3-5*x^2+x+1) / ((x^2-2*x-1)*(x^2+2*x-1)). (End) a(n) = ((-(-1 - sqrt(2))^n - 3*(1-sqrt(2))^n + (-1+sqrt(2))^n + 3*(1+sqrt(2))^n)) / (8*sqrt(2)) for n>0. - Colin Barker, Mar 28 2016 E.g.f.: (1/(2*sqrt(2)))*(2*sqrt(2) + (2*cosh(x) + sinh(x))*sinh(sqrt(2)*x)). - G. C. Greubel, Mar 28 2016 MATHEMATICA a = Table[Product[4 + 4*Cos[k*Pi/n]^2, {k, 1, (n - 1)/2}], {n, 0, 30}]; FullSimplify[ExpandAll[a]] Round[%] Join[{1}, LinearRecurrence[{0, 6, 0, -1}, {1, 1, 5, 6}, 20]] (* G. C. Greubel, Mar 28 2016 *) PROG (PARI) a(n) = round(prod(k=1, (n-1)/2, 4 + 4*cos(k*Pi/n)^2)) \\ Colin Barker, Oct 23 2013 (PARI) Vec((x^4-x^3-5*x^2+x+1)/((x^2-2*x-1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, Mar 28 2016 CROSSREFS Cf. A000045, A002530, A136211. Sequence in context: A249221 A127040 A041011 * A041056 A042643 A047179 Adjacent sequences:  A152115 A152116 A152117 * A152119 A152120 A152121 KEYWORD nonn,easy AUTHOR Roger L. Bagula and Gary W. Adamson, Nov 24 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 09:05 EST 2019. Contains 329995 sequences. (Running on oeis4.)