login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152118 a(n) = product( 4 +4*cos(k*Pi/n)^2, k=1..(n-1)/2 ). 2
1, 1, 1, 5, 6, 29, 35, 169, 204, 985, 1189, 5741, 6930, 33461, 40391, 195025, 235416, 1136689, 1372105, 6625109, 7997214, 38613965, 46611179, 225058681, 271669860, 1311738121, 1583407981, 7645370045, 9228778026, 44560482149, 53789260175, 259717522849 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Sequence of products: Product[m + 4*Cos[k*Pi/n]^2, {k, 1, (n - 1)/2}; m=1,2,3,4-> A000045, A002530, A136211 and this one.

Apparently the same as A041011 after the initial term. - R. J. Mathar, Nov 27 2008

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).

FORMULA

From Colin Barker, Oct 23 2013: (Start)

a(n) = 6*a(n-2)-a(n-4) for n>4.

G.f.: (x^4-x^3-5*x^2+x+1) / ((x^2-2*x-1)*(x^2+2*x-1)). (End)

a(n) = ((-(-1 - sqrt(2))^n - 3*(1-sqrt(2))^n + (-1+sqrt(2))^n + 3*(1+sqrt(2))^n)) / (8*sqrt(2)) for n>0. - Colin Barker, Mar 28 2016

E.g.f.: (1/(2*sqrt(2)))*(2*sqrt(2) + (2*cosh(x) + sinh(x))*sinh(sqrt(2)*x)). - G. C. Greubel, Mar 28 2016

MATHEMATICA

a = Table[Product[4 + 4*Cos[k*Pi/n]^2, {k, 1, (n - 1)/2}], {n, 0, 30}]; FullSimplify[ExpandAll[a]] Round[%]

Join[{1}, LinearRecurrence[{0, 6, 0, -1}, {1, 1, 5, 6}, 20]] (* G. C. Greubel, Mar 28 2016 *)

PROG

(PARI) a(n) = round(prod(k=1, (n-1)/2, 4 + 4*cos(k*Pi/n)^2)) \\ Colin Barker, Oct 23 2013

(PARI) Vec((x^4-x^3-5*x^2+x+1)/((x^2-2*x-1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, Mar 28 2016

CROSSREFS

Cf. A000045, A002530, A136211.

Sequence in context: A249221 A127040 A041011 * A041056 A042643 A047179

Adjacent sequences:  A152115 A152116 A152117 * A152119 A152120 A152121

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula and Gary W. Adamson, Nov 24 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 09:05 EST 2019. Contains 329995 sequences. (Running on oeis4.)