

A152118


a(n) = product( 4 +4*cos(k*Pi/n)^2, k=1..(n1)/2 ).


2



1, 1, 1, 5, 6, 29, 35, 169, 204, 985, 1189, 5741, 6930, 33461, 40391, 195025, 235416, 1136689, 1372105, 6625109, 7997214, 38613965, 46611179, 225058681, 271669860, 1311738121, 1583407981, 7645370045, 9228778026, 44560482149, 53789260175, 259717522849
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Sequence of products: Product[m + 4*Cos[k*Pi/n]^2, {k, 1, (n  1)/2}; m=1,2,3,4> A000045, A002530, A136211 and this one.
Apparently the same as A041011 after the initial term.  R. J. Mathar, Nov 27 2008


LINKS

Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,6,0,1).


FORMULA

From Colin Barker, Oct 23 2013: (Start)
a(n) = 6*a(n2)a(n4) for n>4.
G.f.: (x^4x^35*x^2+x+1) / ((x^22*x1)*(x^2+2*x1)). (End)
a(n) = (((1  sqrt(2))^n  3*(1sqrt(2))^n + (1+sqrt(2))^n + 3*(1+sqrt(2))^n)) / (8*sqrt(2)) for n>0.  Colin Barker, Mar 28 2016
E.g.f.: (1/(2*sqrt(2)))*(2*sqrt(2) + (2*cosh(x) + sinh(x))*sinh(sqrt(2)*x)).  G. C. Greubel, Mar 28 2016


MATHEMATICA

a = Table[Product[4 + 4*Cos[k*Pi/n]^2, {k, 1, (n  1)/2}], {n, 0, 30}]; FullSimplify[ExpandAll[a]] Round[%]
Join[{1}, LinearRecurrence[{0, 6, 0, 1}, {1, 1, 5, 6}, 20]] (* G. C. Greubel, Mar 28 2016 *)


PROG

(PARI) a(n) = round(prod(k=1, (n1)/2, 4 + 4*cos(k*Pi/n)^2)) \\ Colin Barker, Oct 23 2013
(PARI) Vec((x^4x^35*x^2+x+1)/((x^22*x1)*(x^2+2*x1)) + O(x^50)) \\ Colin Barker, Mar 28 2016


CROSSREFS

Cf. A000045, A002530, A136211.
Sequence in context: A249221 A127040 A041011 * A041056 A042643 A047179
Adjacent sequences: A152115 A152116 A152117 * A152119 A152120 A152121


KEYWORD

nonn,easy


AUTHOR

Roger L. Bagula and Gary W. Adamson, Nov 24 2008


STATUS

approved



