login
A152109
a(n) = ((8+sqrt(5))^n + (8-sqrt(5))^n)/2.
1
1, 8, 69, 632, 6041, 59368, 593469, 5992792, 60870001, 620345288, 6334194549, 64746740792, 662230374281, 6775628281768, 69338460425709, 709653298187032, 7263483605875681, 74346193100976008, 760993556868950949
OFFSET
0,2
FORMULA
From Philippe Deléham, Nov 26 2008: (Start)
a(n) = 16*a(n-1) - 59*a(n-2), n > 1; a(0)=1, a(1)=8.
G.f.: (1-8*x)/(1-16*x+59*x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*8^(2*k)*5^(n-k))/8^n. (End)
MATHEMATICA
LinearRecurrence[{16, -59}, {1, 8}, 30] (* Harvey P. Dale, Dec 18 2011 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r5>:=NumberField(x^2-5); S:=[ ((8+r5)^n+(8-r5)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 26 2008
CROSSREFS
Sequence in context: A015575 A214344 A228421 * A222064 A317096 A327606
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Nov 24 2008
EXTENSIONS
Extended beyond a(6) by Klaus Brockhaus, Nov 26 2008
STATUS
approved