login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152094 Quartic product sequence: a(n) = Product_{k=1..floor((n-1)/2)} (1 + m*cos(k*Pi/n)^2 + q*cos(k*Pi/n)^4 ), with m = 2*4, q=2*4^3. 7
1, 1, 1, 11, 37, 179, 869, 3683, 18389, 80179, 385029, 1739651, 8134709, 37397203, 173097317, 799986979, 3694294933, 17085418099, 78904394437, 364797113027, 1685324681973, 7789441113619, 35993781049381, 166339303316579 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Limiting ratio at n=30: 4.621205928975311.

Exact value of this limit is (1 + sqrt(137) + sqrt(2*(5 + sqrt(137))))/4 = 4.621196599954103646539033792... - Vaclav Kotesovec, Nov 30 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

FORMULA

G.f.: 1 + x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4). - Vaclav Kotesovec, Nov 30 2012

MATHEMATICA

Table[Product[1 +8*Cos[k*Pi/n]^2 +128*Cos[k*Pi/n]^4, {k, 1, (n-1)/2}], {n, 0, 30}]//Round (* modified by G. C. Greubel, May 08 2019 *)

CoefficientList[Series[1+x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4), {x, 0, 23}], x] (* Vaclav Kotesovec, Nov 30 2012 *)

PROG

(PARI) my(x='x+O('x^30)); Vec(1 + x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4)) \\ G. C. Greubel, May 08 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1 + x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4) )); // G. C. Greubel, May 08 2019

(Sage) (1 + x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019

CROSSREFS

Sequence in context: A210321 A306423 A287018 * A227412 A160623 A147556

Adjacent sequences:  A152091 A152092 A152093 * A152095 A152096 A152097

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula and Gary W. Adamson, Nov 24 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 20:03 EDT 2019. Contains 328197 sequences. (Running on oeis4.)