login
A152067
Expansion of 1 / ((1 - x + x^2)*(1 + x - x^3 - x^4 - x^5 - x^6 - x^7 + x^9 + x^10)).
1
1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 2, 2, 2, 1, 1, 3, 4, 5, 4, 4, 5, 7, 10, 11, 11, 12, 15, 19, 24, 27, 30, 34, 41, 51, 60, 70, 80, 93, 111, 133, 157, 183, 213, 250, 296, 350, 413, 483, 566, 666, 785, 926, 1089, 1279, 1502, 1767, 2081, 2450, 2881, 3387, 3982
OFFSET
0,12
FORMULA
From Colin Barker, Dec 17 2017: (Start)
G.f.: 1 / ((1 - x + x^2)*(1 + x - x^3 - x^4 - x^5 - x^6 - x^7 + x^9 + x^10)).
a(n) = a(n-5) + a(n-6) + a(n-7) - a(n-12) for n>11.
(End)
MATHEMATICA
f[x_] = 1 - x^5 - x^6 - x^7 + x^12; g[x] = ExpandAll[x^12*f[1/x]]; a = Table[SeriesCoefficient[ Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}]
PROG
(PARI) Vec(1 / ((1 - x + x^2)*(1 + x - x^3 - x^4 - x^5 - x^6 - x^7 + x^9 + x^10)) + O(x^100)) \\ Colin Barker, Dec 17 2017
CROSSREFS
Sequence in context: A087698 A101677 A364366 * A286756 A193884 A128084
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Nov 23 2008
EXTENSIONS
New name using Colin Barker's g.f. from Joerg Arndt, Dec 17 2017
STATUS
approved