%I #25 Sep 08 2022 08:45:39
%S 5,4,9,32,85,180,329,544,837,1220,1705,2304,3029,3892,4905,6080,7429,
%T 8964,10697,12640,14805,17204,19849,22752,25925,29380,33129,37184,
%U 41557,46260,51305,56704,62469,68612,75145,82080,89429,97204,105417,114080,123205
%N a(n) = 2*n^3 - 3*n^2 + 5.
%D P. Curtz, Integration numerique des systemes differentiels a conditions initiales, 135 pages, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
%H Vincenzo Librandi, <a href="/A152064/b152064.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 12.
%F G.f.: ( 5 - 16*x + 23*x^2 ) / (x-1)^4. - _R. J. Mathar_, Jul 06 2011
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=5, a(1)=4, a(2)=9, a(3)=32. - _Harvey P. Dale_, Oct 12 2012
%t Table[2n^3-3n^2+5,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{5,4,9,32},50] (* _Harvey P. Dale_, Oct 12 2012 *)
%o (Magma) [2*n^3-3*n^2+5: n in [0..40]]; // _Vincenzo Librandi_, Aug 07 2011
%o (PARI) a(n)=2*n^3-3*n^2+5 \\ _Charles R Greathouse IV_, Oct 07 2015
%K nonn,easy
%O 0,1
%A _Paul Curtz_, Nov 23 2008
%E Simpler definition and more terms from _Paolo P. Lava_, Nov 27 2008
%E Edited by _N. J. A. Sloane_, Jan 04 2008