login
A152040
Decimal expansion of an "almost" BBP type solution in base 20: a=Sum[(1/20^n)*(4/(10*n + 1) + (-2)/(10*n + 2) + (-3)/(10*n + 7) + 5/(10*n + 9)), {n, 0, Infinity}].
0
3, 1, 4, 1, 5, 8, 3, 9, 3, 3, 1, 2, 8, 3, 8, 1, 0, 5, 4, 9, 6, 6, 0, 7, 3, 2, 3, 9, 0, 9, 3, 8, 4, 8, 3, 8, 1, 8, 1, 1, 4, 2, 3, 1, 7, 4, 8, 1, 2, 7, 4, 6, 8, 1, 0, 5, 3, 0, 0, 5, 4, 1, 9, 8, 7, 5, 3, 9, 3, 6, 6, 1, 1, 8, 8, 4, 7, 6, 4, 8, 7, 9, 0, 0, 8, 9, 3, 1, 2, 7, 1, 5, 5, 0, 8, 2, 9, 4, 6, 0, 3, 7, 9, 3, 3
OFFSET
1,1
COMMENTS
The importance of such numbers comes from quantum cosmology: multi-universe theory. The idea is that other universe exist with just slightly different fundamental constants. This Pi' is off by -8.720461412092817*10^-6.
FORMULA
a=Sum[(1/20^n)*(4/(10*n + 1) + (-2)/(10*n + 2) + (-3)/(10*n + 7) + 5/(10*n + 9)), {n, 0, Infinity}].
MATHEMATICA
a = N[Sum[(1/20^n)*(4/(10*n + 1) + (-2)/(10*n + 2) + (-3)/(10*n + 7) + 5/(10*n + 9)), {n, 0, 200}], 200]; Table[Mod[Floor[a*10^n], 10], {n, 0, 200}]
CROSSREFS
Sequence in context: A354617 A324242 A216543 * A013705 A358989 A216548
KEYWORD
nonn,cons,less
AUTHOR
Roger L. Bagula, Nov 21 2008
STATUS
approved