|
|
A152017
|
|
a(n) = n^5-n^4-n^3-n^2-n.
|
|
1
|
|
|
0, -3, 2, 123, 684, 2345, 6222, 14007, 28088, 51669, 88890, 144947, 226212, 340353, 496454, 705135, 978672, 1331117, 1778418, 2338539, 3031580, 3879897, 4908222, 6143783, 7616424, 9358725, 11406122, 13797027, 16572948, 19778609, 23462070
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
|
|
FORMULA
|
a(n) = 6*a(n-1)- 15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), n>5. - Harvey P. Dale, Sep 13 2011
G.f. x*(-3+20*x+66*x^2+36*x^3+x^4) / (x-1)^6. - R. J. Mathar, Nov 17 2011
|
|
MATHEMATICA
|
lst={}; Do[AppendTo[lst, n^5-n^4-n^3-n^2-n], {n, 0, 5!}]; lst
Table[n^5-Total[n^Range[4]], {n, 0, 30}] (* or *) LinearRecurrence[ {6, -15, 20, -15, 6, -1}, {0, -3, 2, 123, 684, 2345}, 30](* Harvey P. Dale, Sep 13 2011 *)
|
|
PROG
|
(MAGMA) [n^5-n^4-n^3-n^2-n: n in [0..40]]; // Vincenzo Librandi, Nov 18 2011
|
|
CROSSREFS
|
Cf. A152015, A152016.
Sequence in context: A109899 A002297 A183270 * A076931 A076932 A244083
Adjacent sequences: A152014 A152015 A152016 * A152018 A152019 A152020
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Nov 20 2008
|
|
EXTENSIONS
|
Changed offset to 0 from Bruno Berselli, Nov 02 2011
|
|
STATUS
|
approved
|
|
|
|