

A152008


Primes which are divisors of numbers of the form (2^phi(3^k)  1)/3^k.


1



7, 19, 73, 163, 487, 1459, 2593, 17497, 39367, 52489, 71119, 80191, 87211, 97687, 135433, 139483, 209953, 262657, 379081
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The primes in this sequence have the property that with the exception of 7 they are congruent to 1 mod 18 and with the exception of 7, 19, 73 are congruent to 1 mod 54.


LINKS

Table of n, a(n) for n=1..19.


MATHEMATICA

a = {}; Do[k = ((2^EulerPhi[3^(w + 1)]  1)/3^(w + 1))/((2^EulerPhi[3^w]  1)/3^w); Do[If[Mod[k, Prime[n]] == 0, AppendTo[a, Prime[n]]; Print[Prime[n]]], {n, PrimePi[2], PrimePi[379081]}], {w, 1, 20}]; Union[a] (*Artur Jasinski*)


CROSSREFS

Cf. A008776, A152007.
Sequence in context: A155296 A155463 A005516 * A002533 A111011 A144723
Adjacent sequences: A152005 A152006 A152007 * A152009 A152010 A152011


KEYWORD

hard,nonn


AUTHOR

Artur Jasinski, Nov 19 2008


EXTENSIONS

Edited by N. J. A. Sloane, Nov 26 2008


STATUS

approved



