login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151915
Wythoff AAAA numbers.
3
1, 9, 14, 22, 30, 35, 43, 48, 56, 64, 69, 77, 85, 90, 98, 103, 111, 119, 124, 132, 137, 145, 153, 158, 166, 174, 179, 187, 192, 200, 208, 213, 221, 229, 234, 242, 247, 255, 263, 268, 276, 281, 289, 297, 302, 310, 318, 323, 331, 336, 344, 352, 357, 365, 370, 378
OFFSET
1,2
COMMENTS
In general Wythoff "AA...A" numbers, say A^(m)(n), with m A's, m>=1, are given by the formula: A^(m)(n) = F(m)*floor(n*Phi) + F(m-1)*n - F(m+1) + 1 where F are the Fibonacci numbers A000045.
LINKS
Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, 18 (2015), #15.11.8.
FORMULA
a(n) = A(A(A(A(n)))) where A(n) = A000201(n);
a(n) = 3*floor(n*phi) + 2*n - 4 = 3*A000201(n) + 2*n - 4, where phi = (1+sqrt(5))/2.
MAPLE
A151915 := proc(n)
g := (1+sqrt(5))/2 ;
2*n-4+3*floor(n*g) ;
end proc:
seq(A151915(n), n=1..30) ; # R. J. Mathar, Jun 09 2018
MATHEMATICA
a[n_] := 3 * Floor[n * GoldenRatio] + 2n - 4; Array[a, 100] (* Amiram Eldar, Dec 02 2018 *)
PROG
(PARI) a(n)=3*floor(n/2*(1+sqrt(5)))+2*n-4
(Python)
from math import isqrt
def A151915(n): return (n-2<<1)+((m:=n+isqrt(5*n**2))&-2)+(m>>1) # Chai Wah Wu, Aug 10 2022
CROSSREFS
Cf. A001622, A000201 (Wythoff A numbers), A003622 (Wythoff AA numbers), A134859 (Wythoff AAA numbers).
Sequence in context: A272141 A289548 A001198 * A100263 A371059 A155082
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 12 2008
STATUS
approved