login
A151914
a(0)=0, a(1)=4; for n>=2, a(n) = (8/3)*(Sum_{i=1..n-1} 3^wt(i)) + 4, where wt() = A000120().
3
0, 4, 12, 20, 44, 52, 76, 100, 172, 180, 204, 228, 300, 324, 396, 468, 684, 692, 716, 740, 812, 836, 908, 980, 1196, 1220, 1292, 1364, 1580, 1652, 1868, 2084, 2732, 2740, 2764, 2788, 2860, 2884, 2956, 3028, 3244, 3268, 3340, 3412, 3628, 3700, 3916, 4132, 4780
OFFSET
0,2
COMMENTS
Also, total number of "ON" "subcells" at n-th stage in two of the four wedges of the "Ulam-Warburton" two-dimensional cellular automaton of A147562, but including the central "ON" cell. Assume that every "ON" cell contains four "subcells". - Omar E. Pol, Feb 22 2015
FORMULA
a(n) = A079315(2n).
For n>=2, a(n) = 8*A151920(n-2) + 4.
a(n) = 4*A151917(n). - Omar E. Pol, Feb 22 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 05 2009, Aug 06 2009
STATUS
approved