login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151763 If n is a prime == 1 mod 4 then a(n) = 1, if n is a prime == 3 mod 4 then a(n) = -1, otherwise a(n) = 0. 10
0, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(A002145(n)) = -1; a(A065090(n)) = 0; a(A002144(n)) = 1. [Reinhard Zumkeller, Oct 06 2011]

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

N. Katz, Lang-Trotter revisited, Bull. Amer. Math. Soc., 46 (2009), 413-457.

FORMULA

a(n) = (2 - n mod 4) * A010051(n).

MAPLE

a:= proc(n) if n::odd and isprime(n) then 2 - (n mod 4) else 0 fi end proc:

seq(a(n), n=1..100); # Robert Israel, Aug 22 2014

MATHEMATICA

a[n_] := Which[!PrimeQ[n], 0, m = Mod[n, 4]; m == 1, 1, m == 3, -1, True, 0]; Array[a, 105] (* Jean-Fran├žois Alcover, Dec 03 2016 *)

PROG

(Haskell)

a151763 n | even n         = 0

          | a010051 n == 1 = 2 - n `mod` 4

          | otherwise      = 0

-- Reinhard Zumkeller, Oct 06 2011

CROSSREFS

Cf. A079260, A079261.

Cf. A066520 (partial sums).

Sequence in context: A060510 A072629 A164292 * A022925 A144607 A051840

Adjacent sequences:  A151760 A151761 A151762 * A151764 A151765 A151766

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Jun 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 22:27 EDT 2018. Contains 315360 sequences. (Running on oeis4.)