login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151752 a(n) = the unique n-digit number with all digits odd that is divisible by 5^n. 3
5, 75, 375, 9375, 59375, 359375, 3359375, 93359375, 193359375, 3193359375, 73193359375, 773193359375, 3773193359375, 73773193359375, 773773193359375, 5773773193359375, 15773773193359375, 515773773193359375, 7515773773193359375, 97515773773193359375 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Another way to phrase the proof of uniqueness: after we take the last n-1 digits to be the previous number in the sequence, all odd possibilities for the first digit give different remainders mod 5. By pigeon hole principle, exactly one of them generates the required number. - Tanya Khovanova, Jun 18 2009

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..300

FORMULA

a(n) = d(n)*10^(n-1) + a(n-1), where d(n), the leading digit of a(n), is one of the odd digits 1, 3, 5, 7, or 9 (forming the complete set of residues modulo 5) and is uniquely defined by the congruence: d(n) == (- a(n-1) / 10^(n-1)) (mod 5). - Max Alekseyev

MAPLE

a:= proc(n) option remember; local k, l;

      if n=1 then 5

    else l:= a(n-1);

         for k from 1 to 9 by 2

           while (parse(cat(k, l)) mod 5^n)<>0 do od;

         parse(cat(k, l))

      fi

    end:

seq(a(n), n=1..30); # Alois P. Heinz, Jun 18 2009

MATHEMATICA

nxt[n_]:=Module[{x=FromDigits/@(Prepend[IntegerDigits[n], # ]&/@{1, 3, 5, 7, 9}), l}, l=IntegerLength[n]+1; First[Select[x, Mod[ #, 5^l]==0&]]]; NestList[nxt, 5, 25] (* Harvey P. Dale, Jul 06 2009 *)

CROSSREFS

Cf. A151753, A151754.

Sequence in context: A048350 A030991 A216093 * A127212 A091903 A105490

Adjacent sequences:  A151749 A151750 A151751 * A151753 A151754 A151755

KEYWORD

nonn,base

AUTHOR

David W. Wilson, Jun 16 2009

EXTENSIONS

More terms from Max Alekseyev, Jun 17 2009

Further terms from Alois P. Heinz, Jun 18 2009

More terms from Harvey P. Dale, Jul 06 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 07:08 EDT 2017. Contains 290862 sequences.