login
If the first two terms of the rows of the triangle in A151747 are omitted, this is what the rows converge to.
1

%I #6 Feb 24 2021 02:48:18

%S 11,18,25,29,39,55,57,41,40,61,79,97,132,161,133,65,40,61,79,97,133,

%T 167,155,122,141,201,255,326,424,449,309,113,40,61,79,97,133,167,155,

%U 122,141,201,255,326,425,455,331,170,141,201,255,327,433,489,432,385,483,657,836

%N If the first two terms of the rows of the triangle in A151747 are omitted, this is what the rows converge to.

%H David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]

%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Jun 16 2009, Jun 17 2009