login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151745 Composites that are the sum of two, three, four and five consecutive composite numbers. 4
405, 1395, 3435, 3525, 4245, 4365, 6675, 6885, 7155, 7515, 7995, 8325, 8445, 9075, 10365, 10845, 11205, 11543, 13005, 14235, 14325, 18075, 19725, 19875, 22605, 23257, 23475, 23617, 26805, 27315, 29835, 29955, 31035, 32355, 32925, 33165, 34395 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Robert Israel, Table of n, a(n) for n = 1..6214

FORMULA

Intersection of A151740, A151741, A151742 and A151743. - R. J. Mathar, Jun 17 2009

EXAMPLE

405 is in the list because it is composite and

405 = 202 + 203 (Sum of two consecutive composite numbers)

405 = 134 + 135 + 136 (Sum of three consecutive composite numbers)

405 = 99 + 100 + 102 + 104 (Sum of four consecutive composite numbers)

405 = 78 + 80 + 81 + 82 + 84 (Sum of five consecutive composite numbers).

MAPLE

N:= 10^5: # for terms <= N

Comps:= remove(isprime, [$2..N]):

PSComps:= [0, op(ListTools:-PartialSums(Comps))]:

C2:= convert(PSComps[3..-1]-PSComps[1..-3], set):

C3:= convert(PSComps[4..-1]-PSComps[1..-4], set):

C4:= convert(PSComps[5..-1]-PSComps[1..-5], set):

C5:= convert(PSComps[6..-1]-PSComps[1..-6], set):

R:= convert(Comps, set) intersect C2 intersect C3 intersect C4 intersect C5:

sort(convert(R, list)); # Robert Israel, Aug 17 2020

MATHEMATICA

CompositeNext[n_]:=Module[{k=n+1}, While[PrimeQ[k], k++ ]; k]; q=8!; lst2={}; Do[If[ !PrimeQ[n], c=CompositeNext[n]; a2=n+c; If[ !PrimeQ[a2], AppendTo[lst2, a2]]], {n, q}]; lst2; lst3={}; Do[If[ !PrimeQ[n], c1=CompositeNext[n]; c2=CompositeNext[c1]; a3=n+c1+c2; If[ !PrimeQ[a3], AppendTo[lst3, a3]]], {n, q}]; lst3; lst4={}; Do[If[ !PrimeQ[n], c1=CompositeNext[n]; c2=CompositeNext[c1]; c3=CompositeNext[c2]; a4=n+c1+c2+c3; If[ !PrimeQ[a4], AppendTo[lst4, a4]]], {n, q}]; lst4; lst5={}; Do[If[ !PrimeQ[n], c1=CompositeNext[n]; c2=CompositeNext[c1]; c3=CompositeNext[c2]; c4=CompositeNext[c3]; a5=n+c1+c2+c3+c4; If[ !PrimeQ[a5], AppendTo[lst5, a5]]], {n, q}]; lst5; Intersection[lst2, lst3, lst4, lst5] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2009 *)

CROSSREFS

Sequence in context: A337047 A169904 A267893 * A204636 A224527 A219147

Adjacent sequences:  A151742 A151743 A151744 * A151746 A151747 A151748

KEYWORD

nonn

AUTHOR

Claudio Meller, Jun 15 2009

EXTENSIONS

Corrected and extended by Harvey P. Dale, Nov 25 2014

Corrected by Robert Israel, Aug 17 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 03:31 EST 2020. Contains 338833 sequences. (Running on oeis4.)