

A151723


Total number of ON states after n generations of cellular automaton based on hexagons.


27



0, 1, 7, 13, 31, 37, 55, 85, 127, 133, 151, 181, 235, 289, 331, 409, 499, 505, 523, 553, 607, 661, 715, 817, 967, 1069, 1111, 1189, 1327, 1489, 1603, 1789, 1975, 1981, 1999, 2029, 2083, 2137, 2191, 2293, 2443, 2545, 2599, 2701, 2875, 3097, 3295
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Analog of A151725, but here we are working on the triangular lattice (or the A_2 lattice) where each hexagonal cell has six neighbors.
A cell is turned ON if exactly one of its six neighbors is ON. An ON cell remains ON forever.
We start with a single ON cell.
It would be nice to find a recurrence for this sequence!
Has a behavior similar to A182840 and possibly to A182632.  Omar E. Pol, Jan 15 2016


REFERENCES

S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962 (see Example 6, page 224).


LINKS

David Applegate and N. J. A. Sloane, Table of n, a(n) for n = 0..1025
David Applegate, The movie version
David Applegate and N. J. A. Sloane, Table of n, A151724(n), A151723(n) for n = 0..1025
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n1)1) for n >= 2.]
Bradley Klee, Logperiodic coloring, over the halfhexagon tiling.
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS


FORMULA

a(n) = 6*A169780(n)  6*n + 1 (this is simply the definition of A169780).
a(n) = 1 + 6*A169779(n2), n >= 2.  Omar E. Pol, Mar 19 2015
It appears that a(n) = a(n2) + 3*(A256537(n)  1), n >= 3.  Omar E. Pol, Apr 04 2015


MATHEMATICA

A151723[0] = 0; A151723[n_] := Total[CellularAutomaton[{10926, {2, {{2, 2, 0}, {2, 1, 2}, {0, 2, 2}}}, {1, 1}}, {{{1}}, 0}, {{{n  1}}}], 2]; Array[A151723, 47, 0](* JungHwan Min, Sep 01 2016 *)
A151723L[n_] := Prepend[Total[#, 2] & /@ CellularAutomaton[{10926, {2, {{2, 2, 0}, {2, 1, 2}, {0, 2, 2}}}, {1, 1}}, {{{1}}, 0}, n  1], 0]; A151723L[46] (* JungHwan Min, Sep 01 2016 *)


CROSSREFS

Cf. A147562, A151724, A151725, A161206, A161644, A169779, A169780, A170898, A170905, A182632, A182840, A256536, A256537.
Sequence in context: A073473 A272407 A040084 * A046139 A023243 A087196
Adjacent sequences: A151720 A151721 A151722 * A151724 A151725 A151726


KEYWORD

nonn


AUTHOR

David Applegate and N. J. A. Sloane, Jun 13 2009


EXTENSIONS

Edited by N. J. A. Sloane, Jan 10 2010


STATUS

approved



