login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151703 a(0)=1, a(1)=0; a(2^i+j) = a(j) + 2*a(j+1) for 0 <= j < 2^i. 17
1, 0, 1, 2, 1, 2, 5, 4, 1, 2, 5, 4, 5, 12, 13, 6, 1, 2, 5, 4, 5, 12, 13, 6, 5, 12, 13, 14, 29, 38, 25, 8, 1, 2, 5, 4, 5, 12, 13, 6, 5, 12, 13, 14, 29, 38, 25, 8, 5, 12, 13, 14, 29, 38, 25, 16, 29, 38, 41, 72, 105, 88, 41, 10, 1, 2, 5, 4, 5, 12, 13, 6, 5, 12, 13, 14, 29, 38, 25, 8, 5, 12, 13, 14 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Ivan Neretin, Table of n, a(n) for n = 0..8191

David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata

N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS

MAPLE

See A151702 for Maple code.

MATHEMATICA

a = {1, 0}; Do[AppendTo[a, a[[j]] + 2 a[[j + 1]]], {i, 6}, {j, 2^i}]; a (* Ivan Neretin, Jul 04 2017 *)

CROSSREFS

For the recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D) see: (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708.

If first two terms are dropped, same as A151691.

Sequence in context: A318354 A106480 A099602 * A151691 A201780 A104560

Adjacent sequences:  A151700 A151701 A151702 * A151704 A151705 A151706

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jun 06 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 07:50 EST 2018. Contains 317279 sequences. (Running on oeis4.)