%I #17 Oct 04 2024 20:51:06
%S 3,8,10,10,22,36,28,14,22,36,40,64,116,128,72,22,22,36,40,64,116,128,
%T 84,72,116,152,208,360,488,400,176,38,22,36,40,64,116,128,84,72,116,
%U 152,208,360,488,400,188,88,116,152,208,360,488,424,312,376,536,720,1136,1696,1776
%N G.f.: Product_{k>=0} (1 + 2*x^(2^k-1) + 2*x^(2^k)).
%H David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%e From _Omar E. Pol_, Jun 09 2009: (Start)
%e Triangle begins:
%e 3;
%e 8,10;
%e 10,22,36,28;
%e 14,22,36,40,64,116,128,72;
%e 22,22,36,40,64,116,128,84,72,116,152,208,360,488,400,176;
%e 38,22,36,40,64,116,128,84,72,116,152,208,360,488,400,188,88,116,152,208,...
%e (End)
%Y For generating functions of the form Product_{k>=c} (1 + a*x^(2^k-1) + b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.
%Y Cf. A000079. - _Omar E. Pol_, Jun 09 2009
%K nonn
%O 0,1
%A _N. J. A. Sloane_, Jun 04 2009