

A151693


G.f.: Prod_{ k >= 0 } (1 + 2*x^(2^k1) + 2*x^(2^k)).


10



3, 8, 10, 10, 22, 36, 28, 14, 22, 36, 40, 64, 116, 128, 72, 22, 22, 36, 40, 64, 116, 128, 84, 72, 116, 152, 208, 360, 488, 400, 176, 38, 22, 36, 40, 64, 116, 128, 84, 72, 116, 152, 208, 360, 488, 400, 188, 88, 116, 152, 208, 360, 488, 424, 312, 376, 536, 720, 1136, 1696, 1776
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Table of n, a(n) for n=0..60.
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n1)1) for n >= 2.]
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS


EXAMPLE

Contribution from Omar E. Pol, Jun 09 2009: (Start)
Triangle begins:
..3;
..8,10;
.10,22,36,28;
.14,22,36,40,64,116,128,72;
.22,22,36,40,64,116,128,84,72,116,152,208,360,488,400,176;
.38,22,36,40,64,116,128,84,72,116,152,208,360,488,400,188,88,116,152,208,...
(End)


CROSSREFS

For generating functions of the form Prod_{k>=c} (1+a*x^(2^k1)+b*x^2^k)) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694
Cf. A000079. [From Omar E. Pol, Jun 09 2009]
Sequence in context: A067569 A127518 A176118 * A007284 A080892 A177091
Adjacent sequences: A151690 A151691 A151692 * A151694 A151695 A151696


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Jun 04 2009


STATUS

approved



